Novel method for gelatin extraction of various local fish using High Pressure Processing (HPP)

Jaswir I., Yusof N., Jamal P. and Jami M. S.

1Department Biotechnology Engineering, Kulliyyah of Engineering, International Islamic University Malaysia, 68100 Kuala Lumpur, Malaysia.
2International Institute for Halal Research and Training (INHART), International Islamic University Malaysia, 68100 Kuala Lumpur, Malaysia
3Marine Natural Product Research Centre, Surya University, Tangerang, Indonesia

Abstract

Gelatin from fish skin is known to be an alternative source for mammalian gelatin. However, it has weaker properties compared to bovine and porcine gelatin, which limits its use in the industry. The conventional method for fish gelatin extraction requires long production time and could cause serious water pollution and chemical treatments are often being used to enhance the yield of fish gelatin and its properties but it may affect the amino acid content of the gelatin. In this regard, High-Pressure Processing (HPP) is a novel method suggested for fish gelatin extraction. The HPP method is classified as green technology as it requires low electricity throughout the process. This study will discuss the impact of HPP the technique gelatin extracted from fish skin. Skins from four types of fish, namely red tilapia (Oreochromis niloticus), black tilapia (Oreochromis mossambicus), grouper (Epinephelus areolatus) and threadfin bream (Nemipterus tambuloides), were used. High pressure was applied at either pre-treatment in citric acid solution or during thermal extraction; and the pressure was maintained at 250 MPa with pressure holding time of 10 minutes and 18 hours of water extraction. Gelatin extract from traditional acid-base method was prepared as a standard for comparison. The study found that there was an increment in the yield of gelatin and the concentration of gelatin extract, and the pre-treatment time was also reduced.

Introduction

Gelatin is formed from collagen through partial hydrolysis process and normally found in bone, tendon and skin of mammalians (Fratzl, 2008). The collagen structure consists of three polypeptide chains (Gly–X–Y) with repeated sequences. X and Y mainly occupied by proline and hydroxyproline residues (Hulmus, 2008). Each chain has a left-handed folded poly-L-proline conformation, and three helices are folded together in a right-handed coil–coil. The triplets’ structure is stabilized by one or two inter-chain hydrogen bonds. In addition, the exposure of proline and hydroxyproline residues to the solvent will cause the triple The traditional acid-base extraction process of gelatin from fish skin consists of three parts, which are pre-treatment, extraction and purification. In the pre-treatment process, acid and alkali were used to remove non-collagenous materials and for the swelling process. Partial cleavage of crosslink occurred when samples are treated with mild acid, resulted in the structural changes that enable the production of water soluble collagen (gelatin) (Schriever and Gareis, 2007).

The critical need for halal gelatin leads to numerous research on alternative gelatin source. Fish skin is known to have high gelatin content due to the fact that fish is the main source of protein (Elgadir et al., 2013). Besides that, the use of fish gelatin can solve religious issues (Islam, Jew, vegetarian, Hinduism) and concerns on health problems (mad cow and BSA) (Arnesen and Gildberg, 2007). However, the properties of gelatin extracted from fish skins are not as excellent as those from mammals (Benjakul et al., 2012). Therefore, the modification of gelatin structure is needed to improve the protein molecules. Chemical modifications are common but they could generate chemical wastes and may affect the amino acid contents of the gelatin (Liqing et al., 2012). Hence, some researchers have suggested the physical modification method known as ‘High-Pressure Processing’ (HPP) (Gudipati and Kannuchami, 2014).

High Pressure Processing (HPP), also known as Ultra-High Pressure, UHP and High Hydrostatic Pressure, HHP, is a non-thermal preservation
Materials and methods

Materials preparation

The fishes (red tilapia \textit{(Oreochromis niloticus)}, black tilapia \textit{(Oreochromis mossambicus)}, grouper \textit{(Epinephelus areolatus)} and threadfin bream \textit{(Nemipterus tambuloides)} were bought from a supermarket in Gombak and their flesh and bone were removed while their skins were washed, cleaned and cut into squares (1 cm x 1 cm) before being stored in -20°C until further use. Three solutions, 0.2% NaOH, 0.2% acetic acid (C\textsubscript{2}H\textsubscript{4}O\textsubscript{2}) and 1.0% citric acid (C\textsubscript{6}H\textsubscript{8}O\textsubscript{7}) were prepared and kept in 4°C for at least overnight. Analytical grade chemicals used were in the whole process.

Gelatin extraction: Acid-base extraction (S1)

The fish skins were thawed and cleaned and the gelatin extraction procedure was carried out according to (Grossman and Bergman, 1992) with slight modification. During the pre-treatment process, the skins were soaked in NaOH, acetic acid and citric acid, respectively. Each soaking period lasted for 40 minutes at 4°C. The skins were washed thoroughly using distilled water after every soaking. The ratio for the skin and all solution was 1:14. Later, treated fish skin was extracted in distilled water for 18 hours at 45°C. The supernatant was kept for further analysis while precipitated components were discarded.

Gelatin extraction: HPP in pre-treatment (S2)

The procedure for gelatin extraction assisted by HPP in the pre-treatment process was performed according to (Gómez-Guillén \textit{et al.}, 2005) with several adjustments. Each fish skin was soaked in NaOH and acetic acid, similar to the previous method. For the swelling procedure, the skins and citric acid were sealed in a polyethylene bag. The bag was placed inside the pressure chamber and the lid was closed. HPP was run at the pressure 250 MPa for 10 min, followed by thermal extraction in distilled water (as conventional method).

Gelatin extraction: HPP in extraction (S3)

The skins were soaked in NaOH, acetic acid and citric acid as mention in conventional methods. Later, samples of the fish skins are put into distilled water in a sealed polyethylene bag, which later being placed into the pressure chamber and HPP method was performed for 10 min at 250 MPa. Supernatant was kept for further analysis while precipitate being discarded. Summary of S1, S2 and S3 process illustrated in Figure 1.

Gel observation

Gelatin extract was kept at 4°C overnight. This will preserve the gelling formation of the gelatin extract (Krug, 2012). Gel formations for each sample were recorded.

Protein concentration (Biuret test)

The biuret test was done according to Gornall \textit{et al.} (1949). UV-Vis Spectrophotometer (Brand: Biochrom, Model: LIBRA S12) were used to obtain the absorbance reading for each concentration at 540
Fourier Transform Infrared Spectroscopy (FTIR) analysis

The functional groups and secondary structure of gelatin extract were done by using the Thermo Scientific Nicolet iS50 FT-IR spectrometer.

Results and discussion

Sample preparation

Four types of fish (red tilapia (RT), black tilapia (BT), grouper (G) and threadfin bream (TB) were used in this research. Skins from the fishes were kept in -20°C freezer overnight to strengthen the gel strength of the gelatin in the skin (Karim and Bhat, 2009), while chemical solutions (sodium hydroxide, acetic acid and citric acid) were stored at 4°C to avoid any gelatin loss during the pre-treatment (Ademola, 2010).

Precautions while handling HPP machine

HPP is a sensitive machine, hence there are certain precautions that need to be taken into consideration while handling the HPP procedure to avoid damages to the process. For instance, maintaining the water level is important as water is used as a pressure medium. Insufficient amount of water will damage the HPP system. In addition, it is critical to remove all bubbles from the polyethylene plastic bag before it is sealed. High pressure exerted on the bubbles will make the bag burst out during HPP procedure. Particles from the bag will come out and disrupt the machine, thus, affecting the HPP process. Through the observation, removing bubbles from citric acid solution is easier compared to removing them from distilled water. Moreover, attention also should be given to the quantity of the sample while running the HPP machine. Even though the vessel can hold up to 150 ml of samples, it is advisable not to fully occupy the tank so the pressure medium (water) could enter the vessel and execute the high pressure process.

Physical appearance

Table 1 presents the physical observation of gelatin extract obtained from the fish skins in different extraction methods. The pH results for gelatin from all fishes were acceptable as they were within the standard of edible gelatin, which are between 3.5 – 5.5 for Type A gelatin (GMIA, 2012). The pH number from gelatin extracted through high pressure assistance (S2) was not significantly different from the control (S1). This is showing that pressurization during pre-treatment process does not affect the pH of the gelatin extract. Gelatin from S3 procedure obtained lower pH compared to S1 and S2. Until recently there are no explanation on the relationship between the pH of gelatin and the method used for its extraction (Park et al., 2013).

Colourless liquid appeared on the gelatin solution extracted from red tilapia and grouper skin while black tilapia and threadfin bream produced a brownish extract solution (Table 1). Hence, different fish species, fish origin and extraction method lead to various pH and colour of the gelatin extract solutions (Ratnasari et al., 2013).

The weight of each skin was taken before and after extraction. From the Table 1, final skin weight from the S2 course was lower compared to the standard (S1) method for all types of fish. For the red tilapia fish, the percentage of skin weight loss in S2
process was 60.62% compared to 57.79% for the S1 method. In addition, 52.58% of grouper skin weight loss was recorded for the S2 course compared to 49.4% in S1. Threadfin Bream recorded the highest difference in the percentage of skin weight loss in S2 compared to standard, which were 65.12% and 59.5%, respectively. During S2, the presence of high pressure increased the swollenness of the fish skin during pre-treatment and permitting more water to infiltrate into protein structure, which allowing more gelatin to be extracted during thermal hydrolysis.

Gel formation of gelatin

Extract solution of gelatin was kept at a matured temperature (4°C) overnight. Figure 2 shows the result of gel formation for all samples. Twelve samples of fish gelatin were produced from four types of fish skin, in three different processes. Gelatin extracted from the S1 method has been used as a standard. The gels from gelatin assisted by HPP in pre-treatment for red tilapia, black tilapia and grouper appear to have similar gel formation with the standard (S1) while gelatin from S3 process produced fragile gel/no gels. The gel formation in the gelatin extracts from black tilapia skin had the same observation as red tilapia. Meanwhile, grouper is known to have high gel strength (Irwandi et al., 2009) and gels produced from S1 and S2 methods were solid, meanwhile no gels appeared at the S3 sample after being refrigerated. For the gelatin from the threadfin bream skin, S2 produced the gelatin slightly harder gel at 4ºC compared to S1 process, and no gel at all for S3 sample.

The results from Figure 1 show that all gelatin from S3 process had failed to produce gels at lower temperature (4°C), indicating that all have very low melting points (Jones, 2004). Furthermore, even though the processing time were decreased from 18 hours to only 10 minutes during water extraction, it has no commercial value. Gómez-Guillén et al. (2005) suggested that the increasing the extraction time will improve the results and the amino acid content present in the gelatin helps in stabilizing the conformation of the gel formulation. In this regard, fish gelatin has lower proline and hydroxyproline concentrations compare to mammalian gelatin, which cause them to denature at low temperature (Mariod and Adam, 2013). The results show that the presence of high pressure (250MPa) does not degrade the gelatin protein. In fact, high pressure in pre-treatment method helps in enhancing the protein structure (Chang et al., 2013).

Concentration of gelatin

Biuret test is a simple, rapid and precise qualitative test for protein determination in gelatin. Colour response on Biuret test depends on the molecular weight distribution and amino acid composition. The correlation of absorbance (y) and protein concentration (x) obtained from the standard curve was y = 0.0553 x (R² = 0.9993). As observed
from Figure 3 (a), the concentration of gelatin from S2 process was higher compared to the standard (S1) for all types of fish and the red tilapia in S2 process exhibited the increment of the gelatin concentration more than 2% (18.21%) compared to standard (15.7%). Comparably, the protein concentration of gelatin from grouper and threadfin bream had also increased after high pressure treatment, from 15.78% to 16.67% and 9.25% to 9.61%, respectively. These findings proved that the use of high pressure is able to increase the concentration of the gelatin, indicating the improvement of the gelatin’s properties. The pressurization hardly destroyed the amino acid composition in the gelatin but, it inherently affected the composition of amino acid and distribution of molecular weight of the gelatin (Rendueles et al., 2011). The gelatin arrangement was modified slightly during HPP process, thus enhancing the concentration of the gelatin protein extracts and the concentrations of gelatin extracted from all types of fish during the S3 procedure were lower compared to the standard. This illustrates the ineffectiveness of this method and the need for more studies.

Yield of gelatin

The gelatin yield measurement was done by dividing the dry weight of gelatin extract to their initial skin weight. Results for the gelatin yield are illustrated in Figure 3 (b). The S2 process produced higher yield compared to the S1 process for red tilapia and black tilapia fish skin, while grouper and threadfin bream produced similar yields for both processes. In this light, the increment of gelatin yield from red tilapia skin (from 258 mg/g S1 process to 321 mg/g S2 process) and 217.5 mg/g from 201.5 mg/g for black tilapia skin was caused by the pressurization, high-pressure-induced protein denaturation by destabilizing the inter and intra molecular bond, which will increase the yield of the gelatin during thermal extraction (Liqing et al., 2012). Besides, the presence of higher-pressure during pre-treatment allows more acid to penetrate into the skin structure. According to the mass transfer theory, the rate of mass transfer is equal to the pressure/resistance, hence higher pressure will increase the amount of solvent infiltrate into the cell membrane, and thus more acid could permeate the cell membrane. Under the process of HPP extraction, the differential pressure between the cell interior and the exterior of cell membranes is large that it will lead to rapid permeation (Shouqin et al., 2005). For grouper and threadfin bream, there are no changes in the yield, which shows that the acid/HPP treatment done in this study does not have significant impact. Hence, changing the procedure or acid used might be the best solution in understanding the effect of HPP on gelatin yield. Besides that, eventhough the pressure does not have any significant influence on the yield, it might affect the other physical properties. A study done by Chang et al. (2013) found that the mechanical strength of the collagen increased even though the yield of collagen from skin treated by HPP is similar with the traditional acid/base extraction method. Thus, more study on gelatin properties are required to study the impact of HPP on gelatin extraction. Consequently, the yield from S3 process show poorer results for all samples. This is similar to the research done by Gómez-Guillén et al. (2005).

Fourier Transforms Infrared Spectroscopy (FTIR)

Fourier Transform Infrared (FTIR) spectroscopy is a method to determine the functional groups and the secondary structure of gelatin (Kaewruang et al., 2013; Nikoo et al., 2014). Generally, gelatin protein consist of five amide bands, which are amide A, Amide B, Amide I, Amide II, Amide III, which resulted from NH stretching vibration, asymmetry stretching CH, CO stretching, NH bending and CH stretching, respectively (Cebi et al., 2016). The spectra of gelatin show the major peaks in the amide region. To compare the absorption intensity between the spectra, the peak height of all amide bands were
Jaswir et al./IFRJ 24(Suppl): S533-S539

From the results in Table 2, wavenumber of gelatin protein from fish skin that has undergone pressurization produced a peak similar to the gelatin extracted using traditional acid-base extraction. For example, amide I, II, III, A and B for gelatin extracted from threadfin bream fish skin using conventional method were 1635.88 cm⁻¹, 1529.51 cm⁻¹, 1232.58 cm⁻¹, 3295.73 cm⁻¹ and 2935.49 cm⁻¹, respectively, while 1632.33 cm⁻¹, 1540.58 cm⁻¹, 1237.45 cm⁻¹, 3289.44 cm⁻¹ and 2925.84 cm⁻¹ were recorded for gelatin with HPP treatment. These results verified that gelatin structure was preserved even after experiencing the high pressure treatment.

Conclusion

Findings from this study have shown that high pressure processing during the swelling procedure is beneficial to reduce the extraction time (from 40 min to 10 min), increase the yield and enhancing the quality of the gelatin obtained (concentration of protein extract). Gelatin extracted from red tilapia skin provides significance result compared to grouper and threadfin bream in HPP method. More studies are needed to optimize the production of gelatin extract assistance by the HPP.

Acknowledgment

This research was carried out with the funds from International Islamic University Malaysia (IIUM) and International Institute for Halal Research and Training (INHART).

References

