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Abstract

Recently, bioactive peptides have been used as an alternative to treat or prevent diseases. 
Although milk has been the most studied food, different crops have been investigated with the 
aim of diversifying peptides alternatives. Amaranth is an American crop with a high percent-
age of protein (> 15%), and has been used in several studies to release peptides with different 
bioactivities. This review presents the state of the art in peptides generation from amaranth 
proteins; finding that hydrolysis in vitro digestion is the most typical process to release 
peptides. This review also focuses on amaranth as a potential product for obtaining bioactive 
peptides. 
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Introduction

 Amaranth is a pre-Columbian food which 
found in the region between Mexico and Peru, and 
was consumed by several ancient civilizations such 
as Inca, Aztec, and Maya who included it in their 
diet. Then, amaranth slowly spread to other 
geographical regions, and was found in Europe as an 
ornamental plant since the 18th century, and in Africa 
and Asia as vegetable since the 19th century, all the 
while not attaining similar importance in human 
nutrition as in its country of origin (Borneo and Agu-
irre, 2008). Its presence in several geographical areas 
is due to its adaptability to various environmental 
conditions, such as medium or low fertility soils and 
limited rain fall conditions (Bressani, 1993; Ami-
carelli et al., 2002).
 Taxonomically, this plant belongs to the 
order Caryophyllales, family Amaranthaceae and 
genus Amaranthus. There are over 800 amaranth 
species in the world, most of them weedy species, 
like A. retroflexus. Only few species are used as food, 
leafy vegetable, forage, and ornamental, the most 
common being A. tricolor, A. blitum, A. caudatus, A. 
cruentus, and A. hypochondriacus (Bressani, 1993; 
Aguilar et al., 2011). Because of its nutritional char-
acteristics, it is not considered a cereal; rather a 
“pseudo-cereal”, like buckwheat and quinoa 

(Amicarelli and Camaggio, 2012). Amaranth is an 
annual dicotyledonous and herbaceous plant that can 
reach over 3 m in a rigid upright stems. Leaves of 
amaranth are greenish and reddish, which are mostly 
edible. Its flowers are very small in purple, dark red, 
or yellow green colours. Its fruits contain a tiny and 
lenticular seed (1.0 - 1.5 mm diameter; 0.6 - 1.2 g) 
which may be white, gold, red, and dark (Teutonico 
and Knorr, 1986; Bressani, 1993; Adhikary and Pratt, 
2015). 
 The grain chemical composition of Ama-
ranth is presented in Table 1. The grain of amaranth 
includes the coat (smooth, thin, and easy to remove), 
the germ (rich in fat), and the perisperm (rich in 
starch). Because of its quantity and quality of macro-
nutrients (higher percentages in protein and fat), it is 
different from common cereals (Bressani 1993; 
Caselato-Sousa and Amaya-Farfán, 2012). Another 
important fact of amaranth is that its seed has a 
balanced amino acid composition, similar to the 
FAO/WHO guidelines for human diet (Mlakar et al., 
2010; Amicarelli and Camaggio, 2012; Rastogi and 
Shukla, 2013).

Amaranth proteins
 The best source of high-quality proteins are 
animal proteins. However, these are usually expen-
sive and some of them cause allergies or intolerances 
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(Tavano et al., 2008; Shevkani et al., 2014). For this 
reason, many nutritional studies are focused on plant 
proteins like those of amaranth (Peiretti, 2018; 
Peiretti et al., 2018; Zhang et al., 2019). Amaranth 
grain has high digestible quality protein (13 - 19% of 
protein with 90% of digestibility), with good balance 
in amino acids, better than that in cereals and 
legumes; high in lysine, which is deficient in cereals, 
and also lacks of protein-forming gluten (gliadin) 
making it proper for its consumption in celiac diet 
(Alencar et al., 2017; Kurek et al., 2018).
 Amaranth grain proteins could be divided 
according to its solubility in albumins, globulins, and 
prolamins (Barba de la Rosa et al., 1992). 
Silva-Sánchez et al. (2008) reported the presence of 
the three protein fractions and later, Mon-
toya-Rodríguez et al. (2014a) observed the same 
proteins even after extrusion process. 

Globulin 11S or amarantin
 Globulin 11S or amarantin is the main 
fraction in amaranth protein isolates (Quiroga et al., 
2009). It was first characterised by Barba de la Rosa 
et al. (1996), and consists of 501 amino acids (Figure 
1), and a molecular weight of 56 kDa. Globulin 11S 
is one of the most important storage proteins of the 
seed (Condés et al., 2009). Globulin 11S consists of 
three subunits integrated with two trimmers into a 
homohexamer (Carrazco-Peña et al., 2013). The 
homohexamer is made up with monomers between 
52 and 59 kDa, which are linked by a SS-bond (Jans-
sen et al., 2017). 

Globulin 7S
 Globulin 7S is present in amaranth in fewer 
amounts than 11S globulin, and also less studied 
(Tandang-Silvas et al., 2010). Quiroga et al. (2009) 
described globulin 7S as four subunits of 66, 52, 38, 

.

and 16 kDa, with a molecular weight of 200 kDa. 
While García-González et al. (2013) reported globu-
lin 7S as three principal subunits called α (57 - 69 
kDa), α´ (57 - 72 kDa) and β (42 - 52 kDa), which are 
linked by covalent bonds formed by a trimer with a 
molecular weight between 170 and 200 kDa.

Figure 1. Amino acid sequence of Globulin 11S.
Amino acid nomenclature: C, cys; cysteine; H, his; 
histidine; I, ile; isoleucine; M, met; methionine; S, ser; 
serine; V, val; valine; A, ala; alanine; G, gly; glycine; L, 
leu; leucine; P, pro; proline; T, thr; treonine; F, phe; 
phenylalanine; R, arg; arginine; Y, tyr; tyrosine; W, trp; 
tryptophan; D, asp; aspartic acid; N, asn; asparagine; B, 
asx; either of D or N; E, glu; glutamic acid; Q, gin; 
glutamine; Z, glx; either of E or Q; K, lys; lysine. Protein 
sequence from database UniProt (http://www.uniprot.org)

Albumins
 In amaranth, albumins are found as a group 
of two polypeptides called MRPs (Methionine-Rich 
Protein) with 16 - 18% of methionine and a molecu-
lar weight of 18 kDa (Segura-Nieto et al., 1994; 
Silva-Sánchez et al., 2004).

Prolamins
 Prolamins are the less abundant protein in 
amaranth (Segura-Nieto et al., 1992). They are 
formed by three fractions with apparent molecular 

 STHASGFFFFHPTKMAKSTNYFLISCLLFVLFNGCMGEGRFREFQ 
QGNECQIDRLTALEPTNRIQAERGLTEVWDSNEQEFRCAGVSV 

IRRTIEPHGLLLPSFTSAPELIYIEQGNGITGMMIPGCPETYESGSQ 
QFQGGEDERIREQGSRKFGMRGDRFQDQHQKIRHLREGDIFAM 
PAGVSHWAYNNGDQPLVAVILIDTANHANQLDKNFPTRFYLA 

GKPQQEHSGEHQFSRESRRGERNTGNIFRGFETRLLAESFGVSEEI 
AQKLQAEQDDRGNIVRVQEGLHVIKPPSRAWEEREQGSRGSRY 
LPNGVEETICSARLAVNVDDPSKADVYTPEAGRLTTVNSFNLPI 
LRHLRLSAAKGVLYRNAMMAPHYNLNAHNIMYCVRGRGRIQI 
VNDQGQSVFDEELSRGQLVVVPQNFAIVKQAFEDGFEWVSFKT 
SENAMFQSLAGRTSAIRSLPIDVVSNIYQISREEAFGLKFNRPETT 

LFRSSGQGEYRRKISIA 

Chemical 
composition 

Per 100 g of 
amaranth seed 

Essential 
amino acids Per 100 g of protein 

Energy (kcal) 365 - 370 Trp 0.98 - 1.80 
Protein (g) 13.57 - 18.19 Met/Cys 4.00 - 4.90 

Total lipid (g) 2.50 - 8.50 Thr 3.30 - 4.00 
Carbohydrate (g) 60.54 - 66.25 Ile 2.70 - 4.00 

Starch (g) 57.27 - 68.00 Val 3.90 - 4.70 
Fibre (g) 2.60 - 6.70 Lys 5.00 - 6.00 

  Phe/Tyr 5.00 - 8.50 
  Leu 4.20 - 6.30 

 

Table 1. Chemical composition and essential amino acids of amaranth grain. 

Sources from personal elaboration by the authors’ data: Caselato-Sousa and Amaya-Farfán (2012), Becker et 
al. (1981), Mlakar et al. (2010), and Adhikary and Pratt (2015). 
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weight between 52 - 54, 33 - 34, and 22 - 27 kDa, 
linked by sulfuric bonds (Barba de la Rosa et al., 
1992; Janssen et al., 2017).
 Globulins, albumins and prolamins are the 
main components of amaranth protein. Protein can be 
hydrolysed by different methods to release peptides 
with different bioactivities.

Bioactive peptides
 Bioactive peptides are defined as specific 
protein fractions with positive physiological func-
tions such as diminishing arterial pressure, and 
having antagonist or agonist opioid effects. Addition-
ally, bioactive peptides can also be antithrombotic, 
antimicrobial, anticholesterol, antioxidant, and 
others (Lorenzo et al., 2018; Onuh and Aluko, 2019). 
In some cases, peptides encrypted in protein 
sequences have multifunctional activities. However, 
while they are still linked in the protein, their activity 
is null. Bioactive sequences can be released by three 
different methods: digestion, enzymatic activity, and 
microbiological hydrolysis (Kitts and Weiler, 2003; 
Hartmann and Meisel, 2007).

Digestion
 In vivo or in vitro enzymatic process is the 
most common way to produce bioactive peptides. 
During this process, the protein is completely hydro-
lysed using the combination of pepsin-pancreatin and 
pepsin-trypsin enzymes. With this enzymatic 
process, peptides with different activities have been 
released in some food proteins, such as milk, egg and 
soybean (Capriotti et al., 2015; Grootaert et al., 
2017; Su et al., 2017). Peptides with antithrombotic 
activity in infants´ blood after the consumption of 
breast milk (Chabance et al., 1995) and antihyperten-
sive peptides after the consumption of sardine and 
yogurt in adults´ plasma (Matsui et al., 2002; Foltz et 
al., 2007) have been identified. Even though in vitro 
studies are cheap and can give a good approach to in 
vivo studies, studies where the comparison of both 
methods have been realised in milk, showing the 
generation of a great amount of peptides and free 
amino acids in both experiments (Sanchón et al., 
2018; Egger et al., 2019).

Enzymatic hydrolysis
 Proteinases and peptidases extracted from 
plants, bacteria, fungi, and animals are used to 
release peptides through enzymatic hydrolysis. For 
example, Suh et al. (1999) found peptides with Angi-
otensin Converting Enzyme inhibition (ACE-i) with 
the use of Pescalase (serine protease from Bacillus 
licheniformis) in maize proteins, and Zarei et al. 

(2014) released antioxidant peptides from palm 
wastes using papain. Also, antioxidant peptides have 
been identified after the use of Alcalase (Bacillus 
subtilis) and Flavourzyme (Aspergillus oryzae) in 
maize and flaxseed, respectively (de Silva et al., 
2017). By the use of both enzymes in a continuous 
process, antibacterial and cholesterol-lowering 
peptides from chia have been released (Coelho et al., 
2018).

Fermentation
 Bioactive peptides can be produced using 
fermentation starter bacteria from dairy products. 
Proteolytic system of this kind of microorganism is 
the way to release encrypted peptides from proteins 
sequences. This system is divided into three principal 
steps, the first one involves proteinase being bonded 
to the cell wall, next oligo-, tri-, and di- peptides 
formed by the proteinase are transported into the 
bacteria, where finally they are newly divided by a 
countless amount of endo-, amino-, tri- and di-pepti-
dases (Savijoki et al., 2006). This method has been 
used in different proteins, such as milk, meat, 
soybean, tomato, pea, and others, releasing peptides 
with multiple activities like ACE-I, antioxidant and 
antimicrobial, with the use of monocultures or a com-
bination of different bacteria (Vermeirssen et al., 
2003; Aguilar-Toalá et al., 2017; Daliri et al., 2018; 
Gallego et al., 2018; Mechmeche et al., 2019).
 The effectiveness of bioactive peptides 
depends on two factors- their resistance to gastroin 
testinal degradation by peptidases and their absorp-
tion into blood stream, which depends on the peptide 
transporters (Peptide Transporter 1 PEPT1, for 
tripeptides; pinocytosis, for soluble peptides; para-
cellular, aqueous transport; transcellular routes). 
Based on these two factors, and the amino acidic 
sequence, the clinical results would be different 
(Aluko, 2015).

Bioactivity from amaranth protein
 Amaranth is a rich protein food (> 15%), 
which makes it a good source for the release of bioac-
tive peptides with different activities. Herein, differ-
ent studies are described. Table 2 lists the methods 
through which bioactive peptides have been released 
from amaranth.

Antihypertensive peptides
 Hypertension is a public health concern 
worldwide, with a prevalence of 30%. The use of 
conventional drugs has typical side effects, which is 
why the use of nutraceutical in the treatment and/or 
prevention of cardiovascular diseases, could 
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most studied protein source of antihypertensive 
peptides, yielding the tripeptides Val-Pro-Pro and 
Ile-Pro-Pro, with high antihypertensive activity with 
dosages between 5 and 100 mg/day (Cicero et al., 
2016).
 The first evidence of antihypertensive 
peptides from amaranth protein is from the study 
conducted by Vecchi and Añón (2009). In this in 
silico study, peptides from globulin 11S were 
screened in a peptide library, mapped via 
database-driven antihypertensive peptides, thus 

hypothetically have economic saving in health 
expenditure (Borgui and Cicero, 2017). The present 
review also highlights the release of peptides with 
antihypertensive activity from different food matrix-
es.
 Antihypertensive activity of peptides is one 
of the most studied bioactivities, and researchers 
have investigated them from different sources such 
as fish, milk, meat, and plant-derived proteins 
(Simonetti et al., 2017; Bhat et al., 2017; Ciau-Solís 
et al., 2018; Yathisha et al., 2019). Milk has been the 

Method Bioactivity evaluated Amaranth used Reference 

Simulated 
gastrointestinal 

digestion 

Antioxidant Amaranthus 
mentagazzianus Delgado et al. (2011; 2015; 2016) 

Antihypertensive Amaranthus cruentus Tiengo et al. (2009) 

Antihypertensive Amaranthus 
hypochondriacus 

Quiroga et al. (2011); 
Barba de la Rosa et al. (2010) 

Anti-inflammatory Amaranthus 
hypochondriacus 

Montoya-Rodríguez et al. (2014a); 
Montoya-Rodríguez and González-Mejía 

(2015); 
Moronta et al. (2016a) 

Antithrombotic Amaranthus 
hypochondriacus Sabbione et al. (2016) 

Dipeptidyl peptidase 
IV inhibition 

Amaranthus 
hypochondriacus Velarde-Salacedo et al. (2012) 

In vivo digestion Cholesterol lowering Amaranthus cruentus Mendonça et al. (2009); 
Soares et al. (2015) 

Enzymatic 
hydrolysis 

Antioxidant Amaranthus 
mentagazzianus Tironi and Añón (2010) 

Antihypertensive Amaranthus 
mentagazzianus Fritz et al. (2011) 

Antihypertensive Amaranthus 
hypochondriacus Tovar-Pérez et al. (2009) 

Anti-inflammatory Amaranthus 
hypochondriacus Moronta et al. (2016b) 

Antithrombotic Amaranthus 
mentagazzianus Sabbione et al. (2015) 

Antioxidant, 
Antithrombotic, 
antihypertensive 

Amaranthus 
hypochondriacus Ayala-Niño et al. (2019a) 

Dipeptidyl peptidase 
IV inhibition 

Amaranthus 
hypochondriacus Soriano-Santos et al. (2015) 

Protein isolation 

Antitumor Amaranthus 
mentagazzianus 

Barrio and Añón (2010); 
Quiroga et al. (2015) 

Antitumor Amaranthus gangeticus Sani et al. (2004) 

Antitumor Amaranthus 
hypochondriacus Maldonado-Cervantes et al. (2010) 

Antihypertensive Amaranthus 
hypochondriacus Luna-Suárez et al. (2010) 

Antimicrobial Amaranthus caudatus 
Amaranthus retroflexus 

Broekaert et al. (1992); 
Lipkin et al. (2005) 

Insecticide Amaranthus 
hypochondriacus 

Valdes-Rodríguez et al. (1993); 
Chagolla-López et al. (1994) 

In silico Antihypertensive Globulin 11S Vecchi and Añón (2009) 

Table 2. Methods used to release peptides from amaranth.



yielding two potent and exposed tripeptides (Isoleu-
cine-Lysine-Proline, IKP; Leucine-Glutamic 
Acid-Proline, LEP) showing an ACE inhibition of 
IC50 of 6.32 mM and 175 µM, respectively. This 
shows for the first time that amaranth protein was an 
antihypertensive peptides source. Once it was proven 
that antihypertensive peptides could be released from 
amaranth globulin, hydrolysates from amaranth 
whole proteic isolates, and their isolated proteins, 
such as albumin, glutelin, and globulin 11S and 7S 
have been realized. Additionally, fermentation of 
amaranth proteins has been realised with lactic acid 
bacteria in mono and combined culture, where great-
er ACE-i was obtained with the use of combined 
strains reaching inhibition percentage of 45.22 ± 0.28 
(Ayala-Niño et al., 2019a).
 Hydrolysis with alcalase was carried out in 
globulin and albumin, obtaining peptidic fractions 
with low molecular weight (550 Da albumin; 400 Da 
globulin) with an IC50 of 636 µM and 375 µM, 
respectively (Tovar-Pérez et al., 2009; Soriano-San-
tos et al., 2015). They also observed that a more 
extensive hydrolysis showed negative results, and 
diminished ACE-i activity (Tovar-Pérez et al., 2009; 
Soriano-Santos et al., 2015). It has been proven that 
simulated gastrointestinal digestion from amaranth 
protein hydrolysates with alcalase does not signifi-
cantly alter the ACE-i activity, having more of the 
double on activity when it is first hydrolysed with 
alcalase than just by gastrointestinal digestion, thus 
concluding that amaranth protein hydrolysates may 
be a good option as hypotensive product (Tiengo et 
al., 2009). Also with the use of alcalase combined 
with flavourzyme, peptide structures with possible 
antihypertensive activity have been found such as 
NIDMLRL and LVRW (Ayala-Niño et al., 2019b). 
Nevertheless, antihypertensive activity can be evalu-
ated by different actions; the most common is the 
competitive and/or non-competitive inhibition of 
ACE. Other mechanisms of action are related to the 
increase in the activity of vasodilator agents such as 
endothelial nitric oxide (NO), inhibition of renin, or 
reducing the sympathetic system, thus inducing vaso-
dilation (Aluko, 2015).
 Induction of NO production through the 
inhibition of ACE has been evaluated in amaranth 
proteins. It has been shown that glutelin’s tryptic 
hydrolysis induces endothelial NO production and 
vasodilation, with an IC50 value of 200 µg/mL; 
explaining for the first time the specific association 
of amaranth peptides with vascular physiology 
(Barba de la Rosa et al., 2010). On the other hand, 
globulin 7S is a minor globulin component in 
amaranth which Quiroga et al. (2011) compared its 
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properties against globulin 11S. In this study, they 
showed that it can be denatured at lower temperature, 
it has higher emulsifying properties, and solubility in 
neutral buffer, thus making it more suitable for food 
requirements, and by bioinformatics analysis they 
found that antihypertensive peptidic sequences were 
released from globulin 7S after a gastrointestinal 
digestion with an IC50 of 0.17 g/L. 
 As shown by Tovar-Pérez et al. (2009), 
alcalase is a suitable enzyme to release antihyperten-
sive peptides, while Fritz et al. (2011) compared the 
action of different enzymes, such as papain, trypsin, 
chymotrypsin, and alcalase. They showed by in vitro 
studies that the best enzyme for the release of antihy-
pertensive peptides was alcalase, with a dose-de-
pendent effect in spontaneously hypertensive rats 
with IC50 of 0.12 mg/mL. Meanwhile, in other study, 
no changes in blood pressure were shown when rats 
were fed with no hydrolysed protein isolates (Lado et 
al., 2015).
 A new way to obtain bioactive peptides is by 
the modification of known molecules, thus obtaining 
diversified activities. In this sense, globulin 11S or 
amarantin is modified to obtain a higher antihyper-
tensive activity. This is because its physicochemical 
properties in its acidic subunit make it available for 
changes. In order to improve its antihypertensive 
activity, the insertion of four Val-Tyr and one 
Ile-Pro-Pro antihypertensive peptides in the primary 
structure in the third variable region of globulin 11S 
was performed. The experiment was carried out 
through a plasmid expressed in Escherichia coli 
Origami and was called AMC3. Once the protein was 
expressed and purified, an in vitro gastrointestinal 
process was performed to validate if the peptides 
inserted were released; an eightfold higher activity 
was found as compared to the non-modified protein 
(IC50 0.064 mg/mL) (Luna-Suárez et al., 2010; 
Castro-Martínez et al., 2012; Morales-Camacho et 
al., 2016). When in vivo studies were performed, 
positive effects where observed in spontaneous 
hypertensive rats; the group that ingested a dose of 
100 mg/kg of a previously hydrolysed (in vitro diges-
tion) AMC3, had similar effects than the groups that 
were treated with captopril (Medina-Godoy et al., 
2013).

Antioxidant peptides
 Antioxidant capacity in peptides has been 
related with the enzyme used to release them, the 
nature of the protein, the structure of the peptide, its 
molecular weight, and the hydrophobicity and amino 
acidic composition (Pihlanto, 2006; Udenigwe and 
Aluko, 2012). The exact mechanisms of how 
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Gln-Gln-Glu-His (IC50 = 16 µg/mL), Ile-Tyr-Ile-
Glu-Gln-Gly-Asn-Gly-Ile-Thr-Gly-Met (IC50 = 71 
µg/mL) and TEVWDSNEQ (IC50 = 20 µg/mL) from 
an in vitro gastrointestinal digestion. 
 According to studies, the presence of His and 
Pro residues are essential for the antioxidant effect, 
suggesting that specific amino acid residues in 
peptides chains play a significant role in antioxidant 
activity (Zou et al., 2016). 

Anti-inflammatory
 Inflammation, which can be acute or chronic, 
is the answer of the host to invasion of foreign 
substances and/or inflammatory stimulus produced 
by different inflammatory mediators such as eicosa-
noids, vasoactive amines, cytokines, and chemokines 
(Serhan and Savilla, 2005). Even when acute inflam-
matory events are well described, chronic inflamma-
tion, particularly in chronic infections and autoim-
mune diseases, are not fully understood (Laveti et al., 
2013). Chronic inflammatory is related to a wide 
variety of diseases, such as asthma, cancer, cardio-
vascular diseases, Parkinson’s, and others, which are 
associated with tissue malfunction (Scrivo et al., 
2011). Because of the relation between chronic 
inflammation and chronic diseases, recent studies are 
focused on the development of bioactive peptides 
with anti-inflammatory action based on cultured 
mammalian cells (especially macrophages) and 
chemically induced inflammation in animal models 
(Majumder et al., 2016). Peptides derived from food 
sources such as milk, edible insects, eggs, and 
soybean have been tested for potential beneficial 
anti-inflammatory effects (Lin et al., 2017; Meram 
and Wu, 2017). Figure 2 describes the anti-inflam-
matory effects that bioactive peptides might have.
 

Figure 2. Anti-inflammatory peptides possible activi-
ty. Bioactive peptides from food may mediate Nucle-
ar Factor-ĸB (NF-ĸB) and Mitogen-activated protein 
kinase (MAPK), by modifying cytokines -IL-6, 
-TNF-α, chemokines, and adhesion molecules.

antioxidant peptides work is not totally understood. 
Some studies have demonstrated its capacity to 
inhibit lipoperoxidation, to scavenge free radicals, to 
chelate metal ions or by avoiding oxidative damage 
by inducing genes that codify the production of 
endogenous enzymes (Sarmadi and Ismail, 2010; 
Undenigwe and Aluko, 2012). For instance, Chen et 
al. (1996) postulated that histidine, because of its 
imidazole groups position, is identified as an impor-
tant hydrogen donator, peroxyl radical scavenger, 
and metal chelator; and hydrophobic amino acids 
increase antioxidant accessibility to cellular targets 
like polyunsaturated chain of fatty acids. On the other 
hand, tryptophan, tyrosine, and phenylalanine could 
donate protons to free radicals and chelate metal ions 
while cysteine and methionine, because their SH 
groups, could also scavenge radicals (Liang and 
Kitts, 2014; David-Birman et al., 2018). The impor-
tance of antioxidant capacity lies on the prevention or 
oxidation delay of major biomolecules, preventing 
cell damage and related diseases to maintain cell 
components in reduced state (Tohma et al., 2017).
 Amaranth is a crop which contents different 
antioxidant compounds such as β-carotene, vitamin 
C, polyphenols, flavonoids, and fatty acids (Peiretti 
et al., 2017; Sarker et al., 2018). The main hydrolytic 
method used for the release of antioxidant peptides in 
amaranth has been the simulated gastrointestinal 
digestion (Delgado et al., 2011; 2015; 2016). It has 
been observed that by the hydrolysis of amaranth 
proteins, an increase on soluble peptides was 
observed, which could be responsible for the antioxi-
dant capacities. For the measurement of scavenging 
capacity, always a dose-dependent activity has been 
observed, showing higher IC50 values than that for 
Trolox (known antioxidant used as positive control) 
(Karamać et al., 2019). The matter which was meas-
ured is a mixture of species with different antioxidant 
potency, including prooxidant molecules and others 
with high antioxidant capacity (Delgado et al., 2011). 
Even when simulated, gastrointestinal hydrolysis had 
the ability to increase antioxidant capacity; a hydrol-
ysis performed with alcalase according to 
Soriano-Santos and Escalona-Buendía (2015) and 
Tironi and Añon (2010) suggested that this enzyme 
has the capacity to enhance antioxidant peptides, 
releasing fractions with molecular size lower than 0.5 
kDa with up to 66% of scavenging activity. When 
alcalase hydrolysis was added to an in vitro gastroin-
testinal digestion, no changes were observed in the 
antioxidant activity (Delgado et al., 2015). Delgado 
et al. (2016) were further able to characterise four 
peptides: Ala-Trp-Glu-Glu-Arg-Glu-Gln-Gly-Ser-
Arg (IC50 = 6.7 µg/mL), Tyr-Leu-Ala-Gly-Lys-Pro-



In recent studies, amaranth has been investigated for 
peptides with anti-inflammatory effects, submitting 
it to different processes and evaluating diverse 
anti-inflammatory answers. The first evidence of 
anti-inflammatory peptides was observed after the 
extrusion of amaranth flour (Montoya-Rodríguez et 
al., 2014a). After the flour was processed and passed 
through an in vitro digestion, anti-inflammatory 
activity in different inflammatory biomarkers 
increased, and yielded three peptides: 
H i s - G l y - S e r - G l u - P r o - P h e - G l y - P r o - A r g , 
Arg-Pro-Arg-Pro-Trp-Arg-Tyr-Thr, and Arg-Asp-
Gly-Pro-Phe-Pro-Trp-Tyr-Ser-His. The first peptide 
showed a higher reduction in oxidised low-density 
lipoprotein receptor 1 (83%) and matrix metallopro-
teinase-9 (52%); and the second peptide had higher 
decrease in intracellular adhesion molecules-1 
(39%). As a result of these studies, it was concludedd 
that extrusion is a technology that releases peptides 
with anti-inflammatory effects (Montoya-Rodríguez 
et al., 2014a; 2014b; Montoya-Rodríguez and de 
Mejía, 2015).
 Amaranth protein hydrolysed with alcalase 
has also shown anti-inflammatory activities. With 
this hydrolytic method, it was observed that a hydrol-
ysis degree of 23 - 30% was ideal for the release of 
peptides with this bioactivity, thus reducing the 
expression of Chemokine Ligand 20, better known as 
CCL20, through the activation of Nuclear Factor 
kappa-light-chain-enhancer of activated B cells 
(NF-ĸB) pathway in activated colonic epithelial 
cells. The peptides responsible of such activity was 
identified as SSEDIKE, which also was proven not to 
be toxic, and to inhibit allergy reactions in mouse 
model, with suppression of IgE secretion and control 
of intestinal inflammation (Moronta et al., 2016a; 
2016b). These studies concludes that different meth-
ods could release different peptides from the same 
protein matrix.

Antitumor
 Protein and peptide studies with anticancer 
potentials are an innovative strategy for cancer 
prevention and cure (Gaspar et al., 2013; Chalamaiah 
et al., 2018; Freitas et al., 2019). This is because they 
possess advantages like low cost, high affinity, and 
strong specificity to target tissues, low toxicity, and 
less adverse side effects (Bhutia and Maiti, 2008; 
Silva-Sánchez et al., 2008). Antitumor peptides act 
on different stages of cancer such as initiation, 
promotion, and progression (de Mejia and Dia, 
2010), thus reducing tumour progression through 
multiple mechanisms including apoptotic, 
function-blocking, antiangiogenic, and 
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immunomodulatory activities (Bhutia and Maiti, 
2008; Hernández-Ledesma and Hsieh, 2017). Even 
though high anticancer activity has been evaluated in 
protein hydrolysates (Ayyash et al., 2018; 
González-Montoya et al., 2018), plants lectins and 
lunasins, which are glycoproteins of nonimmune 
origin distributed in seeds, roots, stems and leaves, 
have also shown high antitumor activity, as in the 
case of soy and amaranth (Moreira et al., 1991; de 
Mejía et al., 2003).
 In amaranth, lunasin is present in all protein 
fractions (albumin, globulins, and prolamins), having 
higher concentration in amaranth glutein with 2.71 to 
3.01 μg lunasin equivalent/g of protein 
(Silva-Sánchez et al., 2008; Maldonado-Cervantes et 
al., 2010). Lunasin is a peptide with 43 amino acids; 
its carboxyl-end contains nine aspartic acids 
residues, an Arg-Gly-Asp (RGD) cell adhesion 
motif, and a helix with structural homology to chro-
matin-binding proteins (De Lumen, 2005). It has 
demonstrated cancer preventive properties against 
mammalian cell culture models and in skin cancer 
mouse model against chemical carcinogens, onco-
genes and inactivators of tumour suppressor proteins 
(De Lumen, 2005). It has been found in soy, barley 
and wheat (Jeong et al., 2002; 2007; González de 
Mejía et al., 2004).
 Amaranth lunasin administration in mamma-
lian cells showed a faster nucleus penetration as com-
pared to the one reported by soy lunasin, and it has 
shown 38.8% of apoptosis in HeLa cells, 5.0% in 
fibroblast cells with a glutelin concentration of 5 μ
g/mL, and inhibition of histone acetylation thus 
inhibiting the transformation of mouse embryo fibro-
blast cells (NIH-3T3 cells) to cancerous foci 
(Silva-Sánchez et al., 2008; Maldonado-Cervantes et 
al., 2010). Amaranth protein hydrolysates with 
alcalase and trypsin have also shown antitumor activ-
ity, where specific structured peptides different to 
lunasin have this bioactivity and they also have 
antiproliferative activity against mouse osteoblast 
precursor cell MC3T3E1, rat bone with osteosarco-
ma UMR106, human heterogeneous epithelial 
colorectal adenocarcinoma Caco-2, and human 
homogeneous epithelial colorectal adenocarcinoma 
TC7 cells (Silva-Sánchez et al., 2008; Barrio and 
Añón, 2010; Quiroga et al., 2015).

Other bioactivities
 In amaranth, antithrombotic peptides have 
been found in its hydrolysates using alcalase and 
trypsin, or in vitro digestion using trypsin and 
pancreatin. In both studies, an increase in clotting 
inhibition was observed, having higher bioactivity in 
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Conclusion

 Research towards novel bioactive peptides’ 
discovery is currently under way and will be helpful 
to discover functional and benefits to human health 
in order to improve the value of amaranth. Although 
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peptides, continuous isolation has limited their appli-
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includes new optimised process to obtain new 
peptide sequences. These looming challenges will be 
addressed and opportunities captured in sciences and 
technology options to strengthen the industry and 
increase the value of traditional food.

glutalin hydrolysates, and in fractions with molecular 
weight lower than 4 kDa, having the ability to be 
absorbed through the intestinal epithelium (Sabbione 
et al., 2015; 2016). Cholesterol lowering activity by 
different methods has also been proven. By in vitro 
digestion, the release of three peptides with 
HMG-CoA reductase (3-hidroxi-3-metilglutaril-co-
enzime A reductase) inhibitory activity was charac-
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 Diabetes is a metabolic disorder character-
ised by high levels of glucose in plasma. It affects 
over 422 million people around the world, and its 
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shown promising results as antidiabetic agents (Oje-
da-Montes et al., 2018; Liu et al., 2019). Amaranth 
protein hydrolysates from an in vitro digestion were 
proven for this bioactivity, yielding inhibition of 
DPPIV with IC50 of 1.1 mg/Ml in a dose-dependent 
manner. In silico analysis identified the tripeptide 
Iso-Pro-Glu as the inhibitor (Velarde-Salcedo et al., 
2013). When amaranth proteins hydrolysed with 
alcalase are used in diabetic mice, it improved their 
glucose tolerance, with remarkable increments in 
plasma insulin was observed (Soriano-Santos et al., 
2015).
 Not only health promoting peptides have 
been proven from amaranth proteins, insecticide 
against insect larvae (Tribilium castaneum and Pros-
tephanus trancatus), and antimicrobial, against 
different fungi (Fusarium culmorum (Smith) Sacc., 
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are able to inhibit larvae trypsin or α amylase from 
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