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Abstract

The objective of the present work was to investigate the haze-active (HA) protein and its
relationship with the turbidity in commercial clear barley beer (BB) and cloudy wheat beer
(WB) stored at 0 - 20°C for seven days. It was found that the maximum turbidity occurred at
0 or 5°C in samples, and the turbidity had a significantly negative correlation with tempera-
ture. Hence, it was recommended to store BB at 10 or 15°C to avoid the haze formation while
WB at 0 or 5°C to promote a stable and high turbidity value. Furthermore, HA protein was
extracted by silica, whose relative molecular weight (Mr) was determined by HPSEC and
divided into four fractions. Mr of HA protein in BB was higher than that in WB in each
fraction. For the correlation of turbidity and different fractions of HA protein, there were
similarities between BB and WB. The content of low Mr fractions consisting of fraction II
(8.34 - 13.92 kDa) in BB or fraction I1&II (< 7 kDa) in WB had positive influences on turbidi-
ty, while high Mr portion including fraction III (38.08 - 45.91 kDa) in BB or fraction IV

wheat beer

(59.28 kDa) in WB showed negative effects on turbidity.

© All Rights Reserved

Introduction

Beer is one of the most popular drinks all over
the world, and the colloidal stability of beer has become
a critical issue for transportation and warehousing.
Generally, the haze formation may be promoted when
beer undergoes unavoidable long distance transporta-
tion or is exposed to the complex temperature environ-
ment (Speers etal., 2003; He et al., 2012). Consequent-
ly, it is necessary to identify the correlation between
temperature and turbidity of beer, and the influence of
different fractions in HA protein to avoid the stability
problems during storage.

Haze is an important appearance characteristic
reflecting the quality of beer. Therefore, turbidity is
very important for brewers, because it is the first visual
quality indication of beer to consumers (limure et al.,
2012). In the market, most BBs are crystal clear with
turbidities less than 2 EBC (European Brewery
Convention), since haze is unacceptable by consumers
(Steiner et al., 2010). However, most of WBs are turbid
and their turbidities are usually over 2 EBC. In addition,
the quality characteristics of the cloudy wheat beer
include both the observed intensity and stability of the
haze, which are accepted by the consumers. Cloudy
WB has a homogeneous, intense, and stable haze,
which the consumers desire (Delvaux et al., 2000).
There are many factors affecting beer haze. For beer
itself, many substances in beer can cause turbidity, such
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as dextrin (Cai et al., 2016), B-glucan (Speers et al.,
2003), protein, polyphenols, hop resin, and yeast
(Steiner et al., 2010). Previous studies established that
the major compounds of haze was from the specific
combination of protein and polyphenols (Asano et al.,
1982; Siebert et al., 1996). Some beer proteins were
considered to have a critical impact on the haze; Barley
dimer alpha-amylase inhibitor-1, barley trypsin inhibi-
tor, hordeins (Colgrave et al., 2012; limure et al., 2012;
Konecna et al., 2012; Picariello et al., 2012), and
protein Z (Curioni et al., 1995; Evans et al., 2003) were
all considered to cause the haze in BB. Schulte et al.
(2016) demonstrated that in the haze proteome, relative
abundance of protein Z4 and lipid transfer protein 1
was more than the other detectable protein. However,
aprotein-polyphenol haze formation model system was
built by gliadins (alcohol-soluble wheat gluten) and
the haze-active polyphenols in WB (Siebert et al.,
1996). Delvaux et al. (2003) found that wheat gluten
proteins and polyphenols formed the haze or precipi-
tate, which was dependent on the gluten concentration.

For external reasons, temperature (He et al.,
2012) could also affect the haze of WB in multiple ways
(Delvaux et al., 2000). On the one hand, lowering the
temperature could reduce solubility of the marginal
soluble materials and produce a higher level of particles.
This led to the phenomenon known as “chill haze” or
“reversiblehaze” (Steiner et al., 2010) presented ataround
0°C. Normally, heating the sample would eliminate
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most of the turbidity caused by chilling. On the other
hand, elevated temperatures could accelerate the inter-
action of substances forming the insoluble particles,
resulting in a faster haze development (Siebert, 2009).
Haze existing in both warm and cold temperatures was
known as ‘permanent haze’ (Speers et al., 2003).

The main objective of the present work was
to invetsigate the haze-active protein and its influence
on the turbidity of beers at different storage tempera-
tures. Here, we analysed the correlation of the turbidi-
ties and physiochemical indicators of beers; and the
correlation of different fractions of HA protein with
the turbidities were also analysed to reveal the effect
of HA protein on the turbidity.

Materials and methods

Materials and reagents

Ten BBs and ten WBs were purchased from
e-commerce platforms (JD and Tmall, China). These
beers were placed in 0, 5, 10, 15, and 20°C incubators
forseven days except for the controls. Standard protein
molecular weight marker was from 6.5 to 158 kDa
(GE Healthcare Gel Filtration Cal Kit, UK). Silica gel
powder with micro-aperture of average 14.0 nm and
diameter of 10 um were purchased from Stabifix (Ger-
many). All other chemicals were of analytical grade.

Analysis of basic indicators

Ethanol content, real concentration, and origi-
nal concentration were analysed by a Beer Analysing
System (Alcolyzer PlustDMA4500 Density Meter,
Anton Paar, Austria). Protein content was determined
by Kjeldahl method (Speed Digester K-425 and Distil-
lation Unit K-350, Buchi, Swiss). The nitrogen protein
conversion factor was 6.25.

Turbidity measurement

The turbidity measurement was referred to
ASBC and EBC analysis methods (ASBC Beer 26
Formazin Turbidity Standards, EBC 9.29 Haze in
Beer: Calibration of Haze Meters). To determine the
initial turbidity of each beer sample, 200 mL of
degassed beer was added to a 250 mL beaker and incu-
bated at 20°C for 30 min. The beer samples stored for
seven days were degassed on the eve of the test and
taken from 0, 5, 10, 15, and 20°C incubators before
testing. Unfiltered beer sample was poured into a test
bottle, and a calibrated turbidity meter was used to
monitor the turbidity (WGZ-4000, Xinrui, China). The
measurements were performed in triplicate.

HA protein extraction
The extraction of HA protein was performed

following the methods of Apperson et al. (2002) and
Siebert and Lynn (2007). Briefly, 0.2 g of dry silica
gel was added into 500 mL of degassed beer to mix
well by stirring at 4°C for 1 h. Then it was centrifuged
at 2,740 g for 10 min at 4°C (TGL-20Br centrifuge,
Anting, China). The precipitate was collected after
decanting the supernatant, and then 5 mL of 0.1 mol/L
NaOH was added to release the HA protein from the
silica. The mixture was stirred and then centrifuged at
7,012 g for 10 min. This step was repeated, and the
supernatant was recovered and made up to 50 mL with
ultra-pure water. Subsequently, 22.5 g of ammonium
sulphate was added to the recovered solution and
stirred for 1 h, and the solution was then centrifuged
at 7,012 g for 7 min to decant the supernatant. Next,
20 mL of ultra-pure water was added to the remaining
precipitate and shaken until the protein was reconsti-
tuted in the solution. The protein was purified by dialy-
sis, then recovered by freeze-drying, and frozen at
-20°C for further analysis.

HA protein molecular weight determination by
HPSEC

Analytical method was carried out according
to Xieetal. (2014). HPSEC was calibrated by markers.
A LC-20AT system with a SPD-20AT detector
(Shimadzu Kyoto, Japan) was connected to the column
of TSK gel Super SW2000. The composition of mobile
phase was 80% (v/v) phosphate buffer solution (0.2
M, pH 7.0) containing 0.15 mol/L NaCl and 20% (v/v)
acetonitrile. The flow rate was 0.2 mL/min, the analyti-
cal time was 50 min, the column oven temperature
was kept at 25°C, and the detection wavelength was
set at 214 nm (Silva et al., 2008). Markers and HA
protein samples were dissolved in the mobile phase
and filtered by 0.45 pm filter membrane (Pall, USA).
Filtrate was collected in the sample bottle and the injec-
tion volume was 20 pL. GPC software was used for
the chromatographic analysis.

Statistical analysis

Datawere processed by the statistical software
SPSS (IBM, USA). The difference at p < 0.05 was
considered significant. Correlation analysis was
performed by Pearson’s correlation double-tailed test,
and the p-values under 0.05 and 0.01 were considered
significantly correlative.

Result and discussion

Basic indicators of BBs and WBs

The basic indicators of beers are shown in
Table 1. The range of ethanol content, real concentra-
tion, and original concentrationin BBs were 4.59-5.62,
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3.19 - 3.96, and 10.54 - 12.36%, respectively. The
protein content was 0.99 - 3.79 g/L. which was mainly
distributed in the range of 2 - 3 g/L. The turbidity in
all samples was below 2 EBC, which ranged from 0.02
to 1.54 EBC. Similarly, the ethanol content, real
concentration, and original concentration in WBs
(Table 1) were 4.11 - 5.48, 3.50 - 4.48, and 10.22 -
12.37%, respectively. The protein content was 2.97 -
8.92 g/L, which was higher than that of BBs. Mean-
while, the difference analysis showed that the protein
content was more concentrated (3 - 5 g/L). The turbidi-
ties of all WBs were above 2 EBC. The maximum
turbidity was 32.5 EBC in sample 4, while the mini-
mum value was 3.4 EBC in sample 1.

Turbidity changes of 10 BBs and 10 WBs at 0 - 20°C
storage

The turbidities of 10 BBs following seven-day
storageat(-20°CareshowninFigure 1. The turbidities
of 10 BBsat 15 and 20°C were below 2 EBC. Especial-
ly, the turbidities of samples 1, 3, and 4 at 0 - 20°C
wereall below 0.2 EBC, and the highest value appeared
at 5°C. The maximum value over 2 EBC occurred at
0°C in samples 2, 6, 7, 8, 9, and 10. In sample 5, the
turbidity increased from 2.47 EBC to the maximum
7.51 EBC when the storage temperature decreased
from 10to 5°C. However, this maximum value dropped
to 2.68 EBC when the temperature decreased to 0°C.
The maximum change was found in sample 10, and
the initial turbidity was 1.54 EBC (Table 1). Following
storage at 20 and 15°C, the value was 1.55 and 1.66
EBC (p>0.05), respectively, no big change was found.
However, the maximum change appeared after the
storage temperature decreased from 5 to 0°C when the
turbidity rose dramatically to 21.68 from 7.71 EBC.

As presented in Figure 1, all turbidities of WB
were far greater than 2 EBC, and the turbidities in all
samples stored at 20°C did not change much in compar-
ison to the initial turbidities. Seven WBs, including
samples 1,2,3,5,7,8,and 9, showed maximum turbidi-
ties at 5°C. But their turbidities at 5 and 10°C were
significantly different (p < 0.05), except sample 5,
whose turbidities at 5 and 10°C were 11.91 and 11.36
EBC (p > 0.05), respectively. The highest turbidity
occurred in samples 4, 6, and 10 at 0°C. The maximum
change appeared in sample 10 whose turbidity rose
from 21.86 EBC to the maximum 49.49 EBC when
the temperature decreased from 20 to 10°C. Mean-
while, samples 9, whose turbidity rose slightly from
15.19t020.11 EBC, had the minimal change in turbidi-
ty after the storage temperature decreased from 15 to
5°C. In comparison to the initial turbidity of this
sample, the turbidities at 0 - 20°C only showed small
fluctuations.

Inaccordance with Figure 1, WBs showed that the max-
imum turbidity of beer also appeared at 0 or 5°C, and
the higher the initial turbidity, the higher the turbidity
after storage. In addition, it was reasonable to accept
that the haze of WB was larger than that of BB because
of different materials and brewing methods, as well as
temperatures and filtration that might have a far-reach-
ing influence on the turbidity (Delvaux et al., 2000).
Besides, the turbidities of most samples stored at 10,
15, and 20°C were lower than those at 0 and 5°C, and
the difference between the above two temperature
intervals was significant (p < 0.05). It was found that
storage temperature was an important factor leading to
this phenomenon. Formation and precipitation ofinsol-
uble complexes were promoted by cold storage. At the
same time, the lower temperature reduced the solubility
of'some potential haze materials (Siebert,2009). There-
fore, the present work recommends that BB should be
stored and transported at 10 or 15°C to avoid the risk
of forming chill haze and rapid haze formation at high
temperatures. For safety, energy conservation and
avoiding the potential freezing, WB should be stored
at 0 or 5°C to obtain a stable and high turbidity value.

Correlation between turbidity and storage tempera-
ture of beers

As shown in Figure 1, it could be inferred that
the turbidities were related to the storage temperature.
Therefore, the correlation analysis of storage tempera-
tures (0 - 20°C) and their corresponding turbidities in
beers was analysed by Pearson’s r correlation
double-tailed test. The turbidity of beer had a negative
correlation (p < 0.05) with storage temperature, and
the absolute value of Pearson’s » (-0.419, p <0.01) of
BB was higher than that (Pearson’s » = -0.355, p <
0.05) of WB. It could be concluded that the turbidity
of BB showed more correlation with storage tempera-
ture than that of WB.

Correlation of turbidities and the basic indicators

As shown in Table 2, the real concentration
significantly correlated with the turbidities of the beers
stored at 5, 10, and 15°C (p < 0.05), and showed
extremely significant correlation (p < 0.01) with the
turbidities of beers stored at 0 and 20°C. While other
indicators had no correlation with the turbidities of BBs
stored at 0 - 20°C. In WB, all indicators in Table 2 had
no correlation with the turbidities at 0 - 20°C.

By correlation analysis, the basic indicators of
beers were not simple factors affecting beer turbidity
directly. Actually, beerisacolloidal solution with com-
plex composition and low stability; thus, proper storage
temperature would promote the haze or precipitation
in beers during storage.
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Figure 1. Turbidities of barley beers (a) and wheat beers (b) at 0 - 20°C following seven days storage. Different lowercase letters
indicate significant differences (p < 0.05) in the same sample; different uppercase letters indicate significant differences (p <
0.05) at the same temperature.
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Table 2. Correlation analysis of the basic indicators and turbidities of 20 beers stored at different temperatures for seven days.

Jauhar, S., et al /IFRJ 27(2) : 295 - 307

Turbidity

Temperature

Pearson’s correlation (r)

Ethanol Original. Real concentration Protein
content concentration content
0°C -0.216 0.053 0.596%* -0.028
5°C -0.092 0.123 0.492* 0.014
BB 10°C -0.133 0.092 0.499* 0.047
15°C -0.130 0.100 0.516* 0.057
20°C -0.059 0.179 0.571%* 0.105
0°C 0.193 0.107 0.051 0.005
5°C 0.244 -0.057 0.058 -0.424
WB 10°C 0.220 0.124 0.189 -0.405
15°C 0.186 0.031 0.030 -0.360
20°C 0.140 -0.072 -0.080 -0.363

* = Correlation is significant at the 0.05 level (two-tailed); and ** = Correlation is significant at the 0.01 level (two-tailed).

Relative molecular weight of HA protein in beers
stored at different temperatures

As shown in Table 3, the Mr of HA protein in
BB were divided into four fractions according to
HPSEC chromatographic profile, and named as I, II,
11, and IV, respectively (Figure 2). Among them,
fraction I (4.03 - 4.80 kDa) and II (8.34 - 13.92 kDa)

were low molecular weight (LMW, < 15 kDa); III
was 38.08 - 45.91 kDa, mostly belonging to high
molecular weight (HMW, > 40 kDa); and IV (86.46 -
119.22 kDa) was HMW. The relative content of com-
ponent I, II, III, and IV in all samples was 5.62 -
15.18, 40.31 - 56.39, 18.48 - 33.63, and 7.99 -
29.31%, respectively. The mean content of fraction
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Figure 2. Molecular weight distribution of HA protein in barley beers and wheat beers. Each picture represents the elution
profile of a beer stored at 0 - 20°C, which is plotted by elution time on the horizontal axis and signal intensity at 214 nm on the
vertical axis. Elution profiles of HA protein in barley beers (a), and elution profiles of HA protein in wheat beers (b). The
numbers after letters represent the sample number, for example, BB1 = sample 1 of barley beer.
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Iand IV were 8.69 and 17.76%, respectively. Fraction
II possessed the highest mean level (48.17%),
followed by component I1I (25.39%). From the overall
trend, the content of fraction II decreased but fraction
III increased in each sample along with the increasing
storage temperature.

The Mr of HA protein in BBs ranged from
LMW to HMW were divided into four fractions.
These results corroborated the findings of numerous
previous works in the Mr of HA protein. limure et al.
(2009) found that HA protein in BB was identified as
protein Z4, protein Z7, and trypsin/amylase inhibitor
pUP13 whose Mr was 35 - 45 kDa. Asano et al. (1982)
elucidated that polypeptides (10 - 30 kDa) originated
from barley primarily was responsible for the haze
formation. However, no research of fraction IV was
found in the previous studies. Therefore, a further
study with more focus on fraction IV was suggested.

HA protein in WB was also divided into four
fractions named I (< 5 kDa), I1 (5 - 7 kDa), I1I (10 - 20
kDa), and IV (59 - 60 kDa), respectively (Table 3).
Among them, fractions I and II fell into LMW range,
fraction III ranged from the low to medium molecular
weight, and fraction IV fell into HMW range. The
content of fractions I, II, III, and IV were 4.27 - 16.25,
5.27-19.92,60.59 - 79.19, and 1.68 - 14.04%, respec-
tively. The mean content of fractions I, II, and IV were
9.49, 8.51, and 8.76%, respectively; but the most
abundant was fraction III, which accounted for
73.24%. Overall, the components content of fractions
II and III accounted for 80%, but fractions I and IV
only accounted for 20%.

Depraetere et al. (2004) developed barley
malt with proteolytic activity that promoted the break-
down of wheat protein into smaller proteins which led

to smaller particles being suspended in beer and better
stability of the haze. However, some literatures about
the influence of wheat proteins on the haze formation
of beers were contradictory. Delvaux et al. (2000)
stated that HMW proteins from wheat increased the
haze. On the other hand, wheat had a strongly negative
effect on the permanent haze intensity because of the
water-soluble or solubilised gluten proteins (Delvaux
etal, 2001).

After comparing Mr of HA protein compo-
nents, the Mr of fractions I, II, III, and IV in WB was
smaller than that of BB, correspondingly. Especially,
most HA protein in WB were in low and medium
molecular weight, the mean level (Table 3) was more
than 90%. In the bright BB, the range of LMW HA
protein components (I and II) (Table 3) was 46.21 -
66.92%, while the range of HMW HA protein compo-
nents (III and IV) was 33.08 - 53.79%. However, no
medium molecular weight HA protein fraction was
found in BB samples. Brijs et al. (2002) found that
HMW proteins were likely to form the haze and spec-
ulated that precipitates were formed when the molecu-
lar weight of proteins was too high.

In the normal brewed beer, the potentially
turbid HMW proteins or peptides could be inevitable.
And some sensitive proteins would also undergo
polymerisation and oxidation during the long-term
storage, thereby increasing the size of molecules.
Thus, the turbidity would eventually occur (Stewart,
2004).

Correlation between turbidity and four HA protein
fractions content in beers

As shown in Table 4, fraction II was signifi-
cantly positively correlated with the turbidity of barley

Table 4. Correlation of turbidity and contents of four HA protein fractions in barley beers and wheat beers.

Barley beer Wheat beer
Turbidity Turbidity
Fraction Pearson Sig. (2- Fraction Pearson Sig. (2-
correlation tailed) correlation tailed)
I 0.011 0.9738 I 0.355* 0.011
1I 0.322% 0.024 1T 0.309* 0.029
I -0.347* 0.015 I -0.251 0.079
v 0.046 0.752 v -0.312%* 0.028
1&I1 0.273 0.060 1&I1 0.351* 0.012
&I -0.073 0.616 &I 0.250 0.080
&IV -0.273 0.060 M&IvV -0.351%* 0.012
[&I&ITT -0.048 0.744 [&I&ITT 0.312%* 0.027

* = Correlation is significant at the 0.05 level (two-tailed).
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beer (Pearson’s r = 0.322). While fraction III was
significantly negatively correlated with the turbidity
(Pearson’s  =-0.347), but the latter was more correla-
tive with the turbidity than the former. Fraction II
(8.34 - 13.92 kDa) indicated a positive influence on
the turbidity but fraction III (38.08 - 45.91 kDa)
showed a negative influence on the turbidity (p <
0.05).

In WB, the correlation of the turbidity and
contents of four fractions as well as their combination
is shown in Table 4. Except for fraction III, the
remaining components were all significantly correlat-
ed to the turbidity. Fractions I, II, and their combina-
tion I&II were positively correlated with the turbidity
(p < 0.05); however, the correlation of I&II (p =
0.012) and I&I&II (p = 0.027) were lower than that
of [ (p = 0.011). It was suggested that the promotion
effect of the combination of fractions I and II on the
turbidity was not a simply additive relationship, which
was actually related to inside and outside environ-
ments of WB and the composition of the amino acids
in these components. Meanwhile, the content of
fractions IV (Pearson’s » = -0.312) and III&IV (Pear-
son’s = -0.351) had a negative correlation with the
turbidity in WB. Therefore, it could be concluded that
LMW fraction (< 7 kDa) in WB including I and II
significantly (p < 0.05) positively influenced the
turbidity; instead HMW fraction IV significantly
negatively influenced the turbidity; but fraction III did
not show any influence on the turbidity although it
possessed the highest level in HA protein.

Siebert (1999) found that the haze-forming
activity of HA protein was mainly in connection with
the mole percent of proline in protein. And Leiper et
al. (2003) observed that silica adsorbed a wide range
of polypeptides, including a 46 kDa protein found in
all beer types. Jin et al. (2009) found bands in the
range of 40 - 66 and 10 - 30 kDa, indicating that
proteins of approximately 40, 25 - 29, and 6.5 - 17
kDa might be significant for the haze formation.
Previous research had found either HMW component
or LMW component was inseparable from the forma-
tion of HA protein. LMW fraction, which led to the
small aggregate particles that tended to remain in the
suspension, could result in more stable turbidity; on
the contrary, HMW fraction was prone to forming
sediment (Depraetere ef al., 2004). This could explain
why fraction II in BB and fraction [ and II (LMW) in
WB had a positively significant (p < 0.05) correlation
with the turbidity; and fraction III in BB and fraction
IV in WB (HMW) was negatively significantly correl-
ative with the turbidity (p < 0.05).

Hence, for BB, reducing the protein level of low
and medium molecules (<40 kDa) in the finished beer was

in favour of decreasing the turbidity. Instead, brewing
WB might be suggested to increase the degradation of
HMW protein that would be the content of LMW
protein, which could be beneficial for the haze forma-
tion and stabilisation.

Conclusion

By storing the commercial BBs and WBs for a 7-day
period at 0 - 20°C, the beer turbidity was determined;
and HA protein in beers was extracted, fractionated
based on HPSEC elution peaks, and its relationship
with beer turbidity was analysed. The maximum
turbidity occurred at 0 or 5°C. The higher the turbidi-
ties of the initial samples, the higher the turbidities
after storage. Therefore, BB is recommended to be
stored and transported at 10 or 15°C to avoid the haze
formation, while the cloudy WB should be stored and
transported at 0 or 5°C to promote a stable and high
turbidity value. Mr of each fraction in BBs was higher
than that in WBs correspondingly. In BBs, fraction II
(8.34 - 13.92 kDa) possessed the highest level of
48.17% and positively affected the turbidity, whose
amount was suggested to be reduced in brewing to
make BB clearer. In WBs, fractions I and II (Mr < 20
kDa) positively influenced the turbidity. The cloudy
WB would be more fullness and have better stability
of haze by promoting the amounts of fractions I and II
during WB wort making.
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