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Abstract

Near-infrared reflectance spectroscopy (NIRS) was used to determine the total starch and 
amylose contents in various kinds of cereals namely wheat, waxy rice, non-waxy rice, millet, 
sorghum, waxy maize, buckwheat, barley, and hulless oat. The partial least-squares (PLS) 
analysis and principal component regression (PCR) were used to establish the calibration 
models. PLS model achieved a better effect than PCR at 1100 - 2500 nm, and the coefficient 
of determination (R2) of the calibration and prediction sets were both higher than 0.9 after the 
best pre-treatment method, first derivative plus Savitzky-Golay. Additionally, the root mean 
square error (RMSE) was lower than 2.50, and the root mean square error of cross-validation 
(RMSECV) was less than 3.50 for starch. By comparing PLS models at different waveband 
regions, the optimal determination results for starch and amylose were obtained at 1923 - 1961 
and 1724 - 1818 nm, respectively. NIRS was found to be a successful method to determine the 
starch and amylose contents in various cereals.
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Introduction

 Cereals, which mainly include rice, wheat, 
oat, and sorghum, are a rich source of carbohydrates, 
vitamins, minerals, oils, and proteins. Global cereal 
production reached approximately 3,000 million tons, 
and accounted for more than 73% of the global 
harvest area. The outputs of maize, rice, and wheat 
were 10.40, 7.41, and 7.29 hundred million tons, 
respectively, accounting for 89% of the total cereal 
production (according to the Food and Agriculture 
Organization (FAO) statistics). Starch is the most 
important component of cereals as its content 
accounts for over 80% of rice (Souza et al., 2016), at 
least 70% of wheat (Rahman et al., 2000), 62% of 
maize (Longe et al., 1982), and roughly 75% of millet 
(all on a dry weight basis).
 Starch is mainly composed of two glucans, 
namely the linear and helical amylose, and the 
branched amylopectin. Native cereal starches have 
varied content of amylose, e.g., Indica and Japonica 
rice have approximately 20% amylose, waxy rice 
only contains < 2% amylose, and waxy maize and 
amylomaize starch have a wide range of amylose 
from 1 to 70% (Buckow et al., 2007). The amylose 
content and the multi-scale structure of starches are 
the major factors determining the physico-chemical 

properties of rice (Wang et al., 2017). Starch with 
higher amylose content has lower crystallinity, higher 
retrogradation rate, lower gel temperature, lower 
viscosity of gelatinisation characteristics, poorer 
waxy quality, and is also harder to be digested than 
low-amylose starch (Zhang and Hamaker, 2012; 
Wang and Copeland, 2015).
 Starch content is usually measured by the 
Association of Official Agricultural Chemists 
(AOAC) method 996.11, by using acid hydrolysis 
(AOAC, 1997). Single- and double-wave 
colorimetric methods are used for the determination 
of amylose (Tian et al., 2015). However, the 
traditional analysis process is time-consuming and 
non-environmentally friendly. Near infrared 
reflectance spectroscopy (NIRS) is a rapid, 
non-destructive, environmentally friendly, 
multi-analytical, and highly accurate determination 
method (Bázár et al., 2016). Recently, NIRS has 
become a popular method in a wide range of 
agricultural and food industry applications, and it is 
even used in some online monitoring systems. 
Siriphollakul et al. (2017) analysed the eating 
qualities (amylose content and texture properties) of 
rice using NIRS. The protein and gluten contents of 
wheat flour (Chen et al., 2017), and the protein and 
amylose contents of rice flour have been successfully 
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determined by NIRS (Xie et al., 2014).
 Previous literature mainly concentrated on 
only one kind of cereal to obtain an accurate model, 
but no common model suitable for all kinds of cereals 
disregarding the difference in chemical compounds 
has been established. Therefore, the present work 
aimed to explore the feasibility of employing NIRS 
in determining the starch and amylose contents in 
various cereals including waxy and conventional 
types. Pre-treatments and chemometric methods 
including partial least squares (PLS) and principal 
component regression (PCR) were applied to 
establish the models and perform the analysis.

Materials and methods

Plant materials
 A total of 101 cereal samples were purchased 
from the markets in Beijing, China. The selection of 
cereal samples was based on their varieties and 
production. The samples consisted of nine kinds of 
cereals: wheat (Bainong AK58, 2; Jimai 22, 2), waxy 
rice (round waxy rice, 11; long waxy rice, 10), 
non-waxy rice (Japonica rice: Changlixiang, 5; 
Daohuaxiang, 5; Pearl rice, 5; Komachi rice, 2; Indica 
rice: Thai Fragrant rice, 5; Simiao rice, 5; Maoya rice, 
5), millet (Qinzhou yellow millet, 5; Jingu 21, 4; 
Longshan millet, 3; Taohuami, 3), sorghum 
(Dongliang 80, 4), maize (Nonghua 101, 4; Denghai 
6702, 4), waxy maize (Zhefengnuo 7, 4; Zhongnuo 
301, 4), buckwheat (Yuqiao 3, 3; Tianqiao 92-1, 2), 
barley (Pu barley 7, 2), and hulless oat (Huabei 2, 2), 
which were obtained from different varieties and 
producing areas of China. All cereal samples were 
ground and passed through a 0.2 mm sieve.
 The standards (amylose and amylopectin) 
were purchased from Sigma-Aldrich (Saint Louis, 
MO, USA). All other analytical grade chemicals 
were purchased from Sinopharm Chemical Reagent 
Co., Ltd., (Beijing, China).

Content analysis of starch and apparent amylose
 The starch content was analysed by method 
996.11 (AOAC, 1997). Apparent amylose content 
(AAC) was determined by forming an iodine-binding 
complex of soluble starch, and measuring its 
absorbance using a U-3010 Spectrometer (Hitachi, 
Tokyo, Japan) at 620 nm (Xie et al., 2014). The AAC 
was calculated based on a standard curve plotted 
from different ratios of amylose and amylopectin 
solutions.

Near-infrared spectra acquisition
 The near-infrared reflectance spectra of

cereal samples were recorded at 1100 - 2500 nm with 
an ANTARIS near-infrared Fourier transform 
spectrometer (Nicolet Instruments Corp., 
Thermo-Fisher Scientific, Madison, WI, USA) 
equipped with a halogen lamp light source and an 
InGaAs detector. Approximately 10 g of powder of 
each sample was loaded in a round cup with an 
internal diameter of 38 mm and a depth of 10 mm. 
The sample was plated with at least 5 mm of 
thickness to prevent light transmission. Each sample 
was scanned three times, and each spectrum was 
collected by 32 scans at a resolution of 2 cm-1.
 
Statistical analysis
 The NIR spectra were imported into the 
OMNIC software (Nicolet Instruments Corp., 
Thermo-Fisher Scientific, Waltham, MA, USA) to 
obtain the average spectrum of each sample. 
Analysis of the data was performed by PCR and PLS 
using the TQ Analysis V6.0 software (Thermo Fisher 
Scientific, Waltham, MA, USA). PCA is a statistical 
method that is applied to extract the main 
information from NIR spectra, and turn a set of 
possibly correlated variables into a series of linearly 
uncorrelated variables (PCs) (Hu et al., 2017). PCR 
is a regression analysis technique based on PCA. 
PCR considers regressing the outcome on a set of 
covariates based on a standard linear regression 
model, and uses PCA to estimate the unknown 
regression coefficients in the model. The PLS were 
evaluated using the leave-one-out cross-validation. 
Pre-treatment methods, including smoothing 
(Savitzky-Golay and Norris) and derivatives (first 
derivative and second derivative) were used to 
eliminate the interference of irrelevant information 
before calibration stage. Savitzky-Golay filters 
utilise a local polynomial fit controlled by three 
parameters to smooth and derivatise the spectra 
(Savitzky and Golay, 1964). Norris derivative 
smoothing is used as a variable selection step, and the 
random noise is removed (Liu et al., 2015).
 Using the spectroscopic signal to set up the 
prediction model makes the PLS analysis as the most 
widely used multivariate calibration technique (Ge et 
al., 2014). PLS analysis has no restriction in the 
selected number of wavelengths, and it extracts the 
maximum information from the spectra to obtain a 
suitable model (Xie et al., 2009). The prediction 
performance was assessed by the coefficient of 
determination (R2), the root mean square error of 
prediction (RMSEP), the root mean square error of 
correction (RMSEC), the root mean square error of 
cross-validation (RMSECV), and the ratio of 
standard deviation (SD) to RMSEP (RPD). The 
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optimal number of latent variables was determined 
by the lowest value of the predicted residual error 
sum of squares (Shao et al., 2011). Models with 
lower RMSEC, RMSEP, RMSECV, and higher R2 
and RPD are considered better (Xie et al., 2009). For 
the PLS model establishment, 80 samples (16 waxy 
rice, 28 non-waxy rice, 12 millet, 3 wheat, 6 maize, 6 
waxy maize, 4 buckwheat, 3 sorghum, 1 hulless oat, 
and 1 barley) among 101 cereal samples were 
allocated at random from each cereal type to the 
calibration set to build the models, and the other 21 
samples were used as the validation sets.

Results and discussion

Analysis of starch and AAC in cereals
 The mean, range, standard deviations (SD), 
coefficient of variation (CV) of the starch, and AAC 
of all the various kinds of cereals are presented in 
Table 1. The starch contents of all the samples were 
between 67.03 - 79.57% with the mean of 72.34%. 
The starch contents of the various samples are 
consistent with previous reports. The contents of 
carbohydrate in non-waxy rice, waxy rice, millet, 
wheat, maize, barley, sorghum, and buckwheat from 
China are 71.8 - 77.5, 74.7 - 79.0, 73.5 - 75.1, 71.5 - 
76.1, 66.6 - 69.6, 63.4 - 65.2, 70.4 - 74.7, and 66.5 - 
67.8%, respectively, based on wet weight (Yang et 
al., 2009). In previous studies, the starch contents of 
millet and sorghum from Nigeria were 75.0 - 85.0 
and 55.6 - 75.2%, respectively, based on dry weight 
(Gaffa et al., 2004). The starch content of waxy rice 
of Indian varieties was 83.48% (Pachuau et al., 
2017), which is higher than that of the Chinese 
varieties assessed in the present work.
 There was a significant difference in the 
AAC of the cereal samples, which ranged from 0.37 
- 23.28%. These values indicated that the amylose 

diversity of the various kinds of cereals was well 
represented by the selected samples. Similar results 
were found in previous studies, e.g., 11.67 - 27.59% 
amylose in non-waxy rice (Yu et al., 2009), 12.2 - 
28.6% in rice (Azudin and Morrison, 1986), 2.2 ± 
0.27% in waxy rice (Pachuau et al., 2017), 21.3% in 
millet, and 20.1 - 21.4% in sorghum (Gaffa et al., 
2004).

NIRS spectra analysis
 The original spectra of the cereals closely 
resembled each other (Figure 1). The typical 
vibrational bands mainly corresponded to the O-H 
stretch, O-H combination, and H-O-H deformation 
combination between 1920 - 1960 nm (Lohumi et al., 
2014). The band at 1400 - 1600 nm is very sensitive 
to hydrogen bonding in the starch, which is also 
related to the first overtone of the hydroxyl groups 
(Noah et al., 1997). Similar to a previous study, the 
band at 1580 nm corresponds to the first overtone of 
the O-H stretching in starch (Niu et al., 2012). The 
intensive absorption band at approximately 2100 nm 
is related to the O-H bend and C-O stretch 
combination, the one at 2500 nm is connected with 
the C-H stretch, and the C-C and C-O-C stretches in 
starch (Aenugu et al., 2011).
 The absorption peaks between 1585 - 1595 
nm are associated with the vibrations of intermolecu-
lar hydrogen-bonded O-H groups in amylose (Salgó 
and Gergely, 2012). In addition, the spectral region at 
1700 - 1820 nm had a good correlation with the 
amylose content (Fertig et al., 2004). Also, the small 
absorption band at 1455 - 1977 nm might be related 
to the C-H second overtone (Bagchi et al., 2016). 
However, it was difficult to find a specific band 
linearly related to the starch or amylose content. 
Accordingly, chemometric methods should be used 
to pre-treat the original NIR spectra and establish the 

Figure 1. Near-infrared reflectance spectra of various cereal samples.
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calibration models.
 
Establishment of the PCR models with full waveband
 The conclusion parameters of the PCR 
models of starch and amylose by various 
pre-treatment methods are presented in Table 2. The 
optimised results for the detection of the starch and 
amylose contents were obtained using the first 
derivative plus Norris derivative smoothing (1 
segment length and 1 gap between segment). The 
PCmax, R

2
c, R

2
p, RMSEC, RMSEP, RMSECV, RPD, 

and prediction error of the starch content were 21, 
0.9439, 0.8932, 0.909, 1.26, 1.26, 2.17, and 
-2.01~2.49, respectively; while for amylose, they 
were 22, 0.9473, 0.9065, 2.12, 2.59, 3.28, 2.54, and 
-2.04~2.40, respectively. Good prediction results 
were also obtained for the texture parameters of 
cooked cereals with R2

c over 0.94 in the PCR models 
(Hu et al., 2018). The accuracy of the PCR models 
was slightly lower than that of the PLS model, which 
is consistent with a previous study (Niu et al., 2012). 
The PLS model was also better than the PCR models 
in the estimation of the wheat protein content 
(Mahesh et al., 2015) and rice protein content (Xie et 
al., 2014). The prediction error of the AAC was 
much higher than that of the starch in both the PLS 
and PCR models, probably because the chemical 
method for the determination of the AAC is more 
complex and has lower accuracy than that used for 
starch measurement, which also highlights the 
practicability of the NIRS method.

Establishment of the PLS models with full wavebands
 The PLS model was established after the 
derivatisation and smoothing pre-processing on the 
NIR spectra. Four spectral pre-treatments including 
the first derivative, second derivative, first 
derivative plus Savitzky-Golay, and first derivative 
plus Norris smoothing were used to optimise the 
calibration model. Each combination of the 
pre-processing methods was tried, and the 
parameters of treatments were gradually adjusted to 
obtain the best calibration model (Ren and Chen, 
1999). The optimal model for the starch content and 
AAC was that pre-treated by the first derivative plus 
Savitzky-Golay (five data points, three polynomial 
order smoothing treatments). The R2 of the 
calibration and prediction sets were 0.9746 and 
0.9028 for starch, and 0.9853 and 0.9334 for 
amylose, respectively (Table 2). The RMSEC were 
0.617 and 1.13, the RMSEP were 1.21 and 2.23, the 
RMSECV were 1.29 and 3.31, and the RPD were 
2.26 and 2.95 for starch and amylose, respectively. 
For the optimal PLS model of starch and amylose 

content, the R2 were higher than 0.97, and the 
RMSEP was lower than 2RMSEC, revealing a clear 
relationship between spectra and content, which 
means that the established models in the present 
work were practicable with satisfactory precision and 
acceptable robustness after the derivatisation and 
smoothing pre-processing on the NIR spectra. 
According to a previous report (Shao et al., 2011), 
the PLS model of NIR region (1100 - 2500 nm) was 
found to be the best for the prediction of rice starch, 
and the R2

c, R
2
p, and RMSEP were 0.926, 0.913, and 

0.241, respectively. The prediction errors of the 
starch and amylose contents in all samples were 
-1.60~2.00 and -4.65~3.45, respectively. In the 
determination of different barley varieties using NIR, 
the total starch model showed a good R2 of 0.96, and 
a RMSECV of 0.79, while the R2 and RMSECV of 
the amylose model were both 0.94 (Ping et al., 2013). 
A modified PLS model based on eight and two data 
points in the first and second smoothing were 
determined to be the best model to measure amylose 
content in brown and millet rice flour, and the R2

c 
were 0.92 and 0.95, respectively (Xie et al., 2014).

Establishment of the PLS models with selected 
wavebands
 Some specific wavebands are more closely 
related to starch and amylose in cereals, e.g., 1700 - 
1820 nm is related to the amylose (Fertig et al., 
2004). Therefore, the determination results of the 
PLS models can be further improved if the related 
information of the absorbance spectra is extracted. 
The bands at 2494 - 2500, 2278 - 2283, 1923 - 1961, 
1538 - 1587, 1724 - 1818, and 1515 - 1587 nm that 
are associated with the C-H/C-C/C-O-C stretch, the 
CH2 deformation, the O-H stretch/O-the H 
combination/H-O-H deformation, the vibrations of 
intermolecular O-H groups, and the C-H second 
overtone, respectively, were selected to establish 
separate models. The best pre-processing technique 
obtained from the full waveband was also applied to 
the selected waveband, and the PLS models were 
re-established.
 The optimised wavelength range was 1923 - 
1961 nm for the PLS model of starch content in 
cereals, with R2

c of 0.9747, R2
p of 0.9061, RMSEC of 

0.616, RMSEP of 1.20, RMSECV of 1.25, RPD of 
2.28, and prediction error of -1.55~2.15 (Table 3). 
This indicated that the O-H stretch, the O-H band 
combination, and the H-O-H deformation 
combination in the starch molecule from the various 
cereals produced the highest impact on modelling 
(Figure 2).
 For the establishment of the amylose model, 
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the characteristic waveband of amylose at 1724 - 
1818 and 1515 - 1587 nm were obtained; both 
achieved favourable results in the establishment of 
the model and predictive performance. The results 
demonstrated that the PLS models on the selected 
wavebands have significant effect in improving the 
predictive accuracy of the models. However, this 
finding is different from the result of a previous study 
in which the PLS-VIP (the PLS models with VIP 
scores) models with selected wavebands had little 
influence on increasing the predictive accuracy of the 
protein content (Chen et al., 2014).

Conclusions

 A rapid analysis method for the quantitative 

determination of starch and amylose contents in 
different kinds of cereals was developed based on 
NIRS combined with chemometrics and waveband 
selection. Cereal samples were effectively quantified 
by the PLS and PCR models, and the PLS model was 
found to be better than the PCR model at full 
waveband. The best pre-treatment for the PLS model 
of starch and amylose content was the first derivative 
plus Savitzky-Golay. The values of the R2

c, R2
p, 

RMSEC, RMSEP, RMSECV, and RPD for starch 
and amylose indicated good predictive accuracy and 
robustness of the models. The best selected 
waveband for modelling were 1923 - 1961 and 1724 
- 1818 nm for starch and amylose, respectively. The 
results demonstrated that NIRS is an alternative to 
the chemical method for the analysis of starch and 
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 Waveband PLS 
Factors R2c R2p RMSEC RMSEP RMSECV RPD Prediction 

error 

Starch 

2494 - 2500 10 0.9745 0.9031 0.618 1.20 1.25 2.28 -1.60~2.14 

2278 - 2283 10 0.9732 0.9040 0.633 1.20 1.25 2.28 -1.62~2.18 

1923 - 1961 10 0.9747 0.9061 0.616 1.20 1.25 2.28 -1.55~2.15 

1538 - 1587 10 0.9747 0.9034 0.616 1.20 1.25 2.28 -1.61~2.14 

Amylose 
1724 - 1818 11 0.9862 0.9353 1.100 2.19 3.34 3.00 -4.41~3.50 

1515 - 1587 11 0.9877 0.9340 1.030 2.20 3.32 2.99 -4.61~3.67 

  

Table 3. Modelling results of the starch and amylose content computed by PLS and pre-treated with first 
derivative plus Savitzky-Golay at selected wavebands.

Figure 2. PLS models of starch content at 1923 - 1961 nm (A), and amylose 
content at 1724 - 1818 nm (B).
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amylose in different kinds of cereals due to its 
simplicity, accuracy, and environmental friendliness.
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